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Broadside Radar Cross Section of the

Perfectly Conducting Cube

1. INTRODUCTION

With its six faces, twelve edges, and eight corners, the cube presents a

challenging problem for the theories and measurement of electromagnetic scatter-

ing. The magnetic field integral equation (MFIE) solution of Tsai, Dudley and Wilton,

for backscattering cross section from a perfectly electrically conducting (PEC) cube

under broadside plane-wave incidence, agreed well with the measurements of Ryan2

up to a cube side length (s) of about 0. 5 wavelengths (W). For s beyond about 0. 5;k

the spurious solutions admitted by the DFIE begin to contaminate the numerical

solution, and comparisons between theory and experimental measurements become

unreliable. To overcome this spurious resonance problem, Yaghjian 3 introduced
"augmented" integral equations and applied the augmented magnetic-field integral

equation (AMIFIE) to the problem of broadside backscattering from the conducting

cube. Because his numerical solution did not exploit the symmetry of the cube,

(!'eceived for publication 26 January 1984)

1. Tsai, L.L., Dudley, D.G., and Wilton, D. R. (1974) Electromagnetic scatter-
ing by a three-dimensional conducting box, J. Appl. Phys. j,5(10):4393-4400.

2. Rwvn, U. E., Jr. (1970) Diffraction Analysis of Scattering by a Cube With
ppli :ation to the Time Response Waveforms, The Ohio State University

Electroscience Laboratory Report 2415-3.

3. Yaghjian, A. D. (1981) Augmented electric- and magnetic-field integrM)
equations. Radio Sci., 16(6):987-1001. (See also RADC In-house Report
TH-81-45 under the samrtitle, A DA103946.)
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and his matrix-inversion subroutine required that the matrix be stored on-line,

computer storage capacity limited the accurate solution of the AMFIE to a cube side

length of about lX.

Ryan 2 .4 applied the geometrical theory of diffraction (GTD) to determine the
high frequency broadside backscattered fields from conducting cubes at harmonically

related frequencies which were combined with low frequency experimental data and
transformed to obtain time-domain responses. Although no radar cross section

(RCS) vs frequency curves were shown in Reference 2 or 4, a similar high fre-
quency diffraction (HFD) solution for broadside RCS is extracted from the enhanced.
high frequency solution of Section 2. 7. Comparison between the HFD curve

(Figure 3) and the AMFIE curve of Reference 3 reveals that there is a poor agree-

ment between the HFD and AMFIE solutions within the region of accuracy (s less

than about (<) X] of the AMFIE solution. Also, as discussed in Section 2. 7,
inclusion of higher order edge diffracted rays in the HFD solution did not improve
the agreement in this region nor enhance the resonance. Moreover, for s > X the

HFD backscattering solution differs slightly from the physical optics (PO) solution
which is plotted in Figure 4. Thus we have little assurance that the conventional

HFD or GTD solution is a significant improvement over the physical optics solution

for broadside RCS vs frequency of a cube.

The purpose of the present work is to predict theoretically the broadside back-
scattering cross sections of perfectly conducting cubes with reasonable engineering

accuracy (z * 1 dB) from arbitrarily low to arbitrarily high frequencies, and to

compare the results to measured RCS data covering a frequency range that extends

well beyond the resonance region. We take a composite approach starting with an

MFIE solution similar to that of Reference 1 for s less than 0. 4 X. For s greater
than 0.4 A the AMFIE is solved utilizing x-y symmetry in order to reduce the number

of unknowns and equations by a factor of four, thereby allowing an accurate numerical

solution on the available Cyber 750 computer up to a side length of about 1.5 A.
Beyond 1. 5 A an "enhanced high frequency diffraction" (EHFD) solution is developed

that integrates the currents induced on the leading face and edges of the cube to
determine the fields impinging upon the trailing edges. The mutual validity of the

EHFD and integral equation solutions is ascertained by their close agreement in the
intermediate frequency range 0. 4 A ; s <. 1. 5 A. (Also, the EHFD solution reveals

4. Ryan, C. E., Jr. (1971) Time-response waveforms for a cube from measured
data and diffraction analysis, Radio Sci. 6(8, 9):801-804.

The HFD solution differs from the GTD solution of References 2 and 4 because the
HFD solution includes doubly diffracted rays (using the term "doubly diffracted"
as defined in Section 2. 5). and because in the limiting procedure used to obtain
broI 1side RCS from the GTD diffraction coefficients, the fringe current fields
fron the front face are not entirely recovered.
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clearly the dominant resonance and shows decent agreement with the integral equation

solution throughout the resonance region, s < 0.5 X. ) The composite RCS vs fre-

quency curve agreed to within about * 1 dB with measured data taken at X-band with

aluminum cubes ranging in side length from 0. 15 to 4 wavelengths.

2. THE ENHANCED HIGH FREQUENCY SOLUTION

2.1 Method of Solution

A time-harmonic e - i wt plane wave E-polarized in the y direction is incident

broadside along the negative z-axis of a perfectly electrically conducting (PEC)

cube shown in Figure 1. The front and back faces of the cube are located at z = 0

and z = -s, the top and bottom faces at y = +s and y = -s, and the right and left side

faces at x = +s and x = -s. respectively. To obtain a high frequency solution, we

begin by dividing the currents excited on the surface of the cube into the physical

optics (PO) current on the front face and the remaining or "fringe currents"

emanating from the edges of the cube. Separation of the surface currents into PO

currents and fringe currents conforms to the approach of Ufimtsev. 5 Although

fringe currents generally become negligible within a small fraction of a wavelength

from an edge, a notable exception occurs for grazing H-wave incidence like that

across the top and bottom faces of the cube in Figure 1, where the fringe current

does not approach zero with increasing distance from the leading edge.

.- - '- Figure 1. Perfectly
Conducting Cube of

-ine ESide s With Broadside
line= E° /o y Plane-Wave Incidence

R i. N o "

5. Ufimtsev, P. Ia. (1957) Approximate computation of the diffraction of plane electro-
magnetic waves at certain metal bodies, Soy. Phys. -Tech. Phys., 27(8):1708-1718.
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The PO surface current is defined as 2 e x n" that is, the current on the
z inc.

front face of the cube that would be excited by the incident field if the front face

were part of an infinite PEC plane.

For the determination of singly diffracted rays from the front edges, the fringe

currents along the leading front four edges of the cube are approximated by the

fringe currents (total current minus PO current) that would emanate from each edge -

if it were part of the corresponding infinite right-angled wedge illuminated by the

incident plane wave. In the context of GTD, a similar technique for evaluating edge

diffracted fields in the vicinity of a caustic region has been called the method of

equivalent (edge) currents. 6,7

To determine the singly diffracted rays from the back edges, the fringe current

emanating from the back four edges of the cube can also be approximated by those

of the corresponding infinite right-angled wedges, provide the fields impinging

upon these edges can be estimated. The fields impinging upon the trailing edges of

the cube consist of the fields scattered by the leading edges in addition to the inci-

dent plane-wave field. The usual method of estimating the high frequency fields

impinging upon a trailing edge at grazing incidence uses the fields propagated along

the grazing face away from the leading edge, under the assumption that the leading

edge were part of an infinite wedge. For a right-angled wedge the grazing currents
S8

or fields have a simple closed-form expression which approaches the incident

plane-wave field for large s. Unfortunately, for a cube side length s less than 1X,

where meaningful comparison between the high frequency solution and an accurate

integral equation solution is possible, the front face of the cube is a poor approxi-

mation to the infinite face of the right-angled wedge and the simple right-angled

wedge expression for grazing fields becomes a poor approximation to the actual

surface fields. Moreover, this basic high frequency approximation for broadside

scattering from the cube remains inadequate regardless of how many interactions

(multiply diffracted rays) between the edges of the cube are included in the solution.

In order to overcome this difficulty and enhance the high frequency solution to hold

with respectable accuracy even in the resonance region, we use a magnetic field

equation to integrate the PO and fringe currents on the leading face and edges to get

a better approximation to the fields impinging upon the trailing edges of the cube.

6. Ryan, C.E., Jr., and Peters, L. . Jr. (1969) Evaluation of edge-diffracted
fields including equivalent currents for the caustic regions, IEEE Trans.
Antennas Propag., AP-17(3):292-299.

7. Knott, E.F., and Senior, T. B.A. (1974) Comparison of three high-frequency
diffraction techniques, Proc. IEEE, 62(11):1468-1474.

8. Bowman, J. J., Senior, T. B.A. , and Uslenghi, P. L. E. (1969) Electromagnetic
and Acoustic Scattering by Simple Shapes, North-Holland, Amsterdam,
Chapter 6.
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After the backscattered far fields are obtained in this manner from the PO .

current and the singly diffracted rays, the high frequency solution is further refined

to include the doubly diffracted rays.

Direct influence of any fringe currents existing along the four edges of the cube

parallel to the z-axis is neglected. Diffraction from the corners of the cube, which

is higher order than edge diffraction, is approximated implicitly when the fringe

currents are integrated over the finite length of the edges.

2.2 The Physical Optics Field

We begin the enhanced high frequency diffraction (EHFD) solution by finding

the backscattered far fields of the physical optics surface current

KPO = 2& xTT = 211 (i)
z inc o y

on the front face of the cube, where H is the amplitude of the incident H-field at0

z = 0. Insertion of the PO current (1) into the integral for far-zone magnetic field

produces, upon integration, the PO backscattered magnetic far field,

P 0 i(ks) eikz

T2 - . H 0 e x" (2)

where k = 2 r /A is the propagation constant. Any valid far-field solution to the cube

should approach the PO result [Eq. (2)], the PO backscattered magnetic far field,

2.3 The Singly Diffracted Fields From the Front Edges

To obtain the singly diffracted far fields of the fringe currents of the four front

edges of the cube, we use the Ufimtsev diffraction coefficients 5 f and g (for a right- .

angled wedge) multiplied by the conversion factor

s -Tl e - in / 4 (3)

which accounts for the finite length s of the edges of the cube. (This factor is

merely the ratio of the far field of a line source of length s to that of an infinite

line source. )

9. Sikta, F. A., et al (1983) First-order equivalent current and corner diffraction
scattering from flat plate structures, IEEE Trans. Antennas Propag.
AP-1(4):584-589.

10. Collin, R. E., and Zucker, F. J. (1969) Antenna Theory, Part 1, McGraw-Hill
New York, Eq. (2. 23a).

9
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Specifically for the plane-wave incidence shown in Figure 1. the H far field

produced in the backscatter direction by the fringe currents of the edges at

(x = s/2. z = 0) is found from the E-wave coefficient f to be

ks ikz
Hox1= --- H ex (4a)

The subscript I denotes singly diffracted fields and the superscripts x and o denote

the x edges on the front face z = 0.
Similarly, the singly diffracted backscattered H-field from the fringe currents

of the front edges of the cube at (y = + s/2, z = 0) is found from the H-wave coeffi-

cient g:

Hy °  ks H eikz (4b)
1 " 045)

2.4 The Singly Diffracted Fields From the Back Edges

The far fields scattered by the back edges of the cube can also be found simply

from the diffraction coefficients, provided the grazing field impinging upon the back

edges of the cube is known. Consider first the top and bottom rear edges at

(y = ±s/2, z = -s). Initially assume an average magnetic field impinging upon these

edges given by HI exp(iks), but postpone the evaluation of H until the later Sec-
o0

tion 2.6. A convenient way to determine the far fields of these back two edges is to

note that only the fringe current on the back faces of these edges contributes to the

backscattered far field; thus the desired backscattered H far field will be just the

negative of the forward scattered field. Since this forward scattered H-field is

easily found from the H-wave diffraction coefficient g. the backscattered H far field

from the top and bottom back edges is readily determined as

-ys _ ks H'e eikz t(
7,3%/"G o - x " 5

2iks

The e phase factor, present in [Eq. (5)] but missing in [Eqs. (4)], accounts for

the extra propagation path length to and from the back of the cube. The diffracted

field [Eq. (5)] can also be found from the more conventional GTD procedure of

taking half the value of the GTD H-wave diffraction coefficient when the direction11
of propagation lies along a terminated conducting plane. To the field in [Eq. (5)]

could be added the secondary scattered field of the current excited on the front face

11. Kouyoumjian, R.G. (1975) The geometrical theory of diffraction and its applica-
tion, in Numerical and Asympototic Techniques in Electromagnetics (Topics
in Applied Physics, Volume 3), R. Mittra, Ed., Springer-Verlag, New York.
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of the leading edges by the return field diffracted from the back edges. This doubly

diffracted field will be determined along with the other doubly diffracted rays, in

the next section.

The grazing field travelling toward the left and right rear edges of the cube is

greatly diminished by propagation along the perfectly conducting side faces parallel

to the electric field of the incident plane-wave. In other words, for the plane-wave

incidence of Figure 1, the side faces severely shadow the back edges at

(x = * s/2, z = -s) to the extent that diffraction from these edges can be neglected.

To prove that this is indeed the case even for ks on the order of 1, we use Eq. (6. 13)

of Reference 8 to estimate the current impinging upon the rear side edges, then

Eq. (6. 10) of Reference 8 to find the diffracted H-field returning from an equivalent

grazing plane wave that would produce the impinging current, and finally the f-

diffraction coefficient to find the diffracted far field from the front side edges subject

to the returning grazing H-field. In all we find an H far field diffracted from the

rear side edges given approximately by

s i ./4 ikzrxs =ks 2 iee 2iks e_ 33 'F H ° e - x" (6)
x1 'rT5

Because - x1 is less by over an order of magnitude than the far field T s diffracted1 1
from the top and bottom back edges when ks is greater than unity, and because it

becomes increasingly smaller with increasing ks than even the doubly diffracted

terms (derived in the next section). Hx s will not be included in the EHFD solution.

2.5 The Doubly Diffracted Fields

The doubly diffracted rays are incident rays that diffract from two edges before

returning to the backscatter direction. For the cube under broadside incidence,

they consist of three sets of rays: (1) those that travel once between opposite edges

of the front face, (2) those that travel once between opposite edges of the back face,

and (3) those secondary rays mentioned in Section 2.4 that are excited at the front

edges by the rays returning from the corresponding trailing edges. To obtain the

field of each doubly diffracted ray, the applicable diffraction coefficient is used

twice-the first time to determine the diffracted field radiating from the first edge

toward the second edge, and the second time to evaluate the backscattered field

radiated by the second edge under the illumination by the fields from the first edge.

Since the three sets of doubly diffracted fields are evaluated by a straightforward

manipulation of the diffraction coefficients, only the results will be given here.

Letting T2yo Tys and 2Tyz designate the H-wave magnetic field of the three

sets of doubly diffracted rays numbered above as (1). (2)., and (3), respectively,

we find

11
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yo k ks eikzks H eiks (7a)
2 0 TV'i x

ikz
TY' -A ks H e 3 iks 

e

2 t, -e (7b)

eks H e 2 iks ez (7

The double-diffraction factor A in Eqs. 7a, 7b, 7c equals Vf2/(37rks)e

Similarly, designate the doubly diffracted E-wave magnetic fields by 'r x
IT"2 and IT". The fields Txs and f[xz from the doubly diffracted rays can be elimi-

2 2 2 2
nated immediately because the singly diffracted fields exciting these rays propagate

across the faces x = ± s/2 parallel to the E-field and were shown in Section 2.4 to

have negligible magnitude for ks greater than about 1. The field .jxo of the E-wave2
rays diffracted across the front face of the cube from the edge at x = Wsf2 to the

edge ± s/2 has the considerably higher value,

xo A eiks e i k z (8)
i2 = H Z x

However, 7T2 also will not be included in the EHFD solution because it decays with2
ks faster than the H-wave doubly diffracted terms [Eq. (7)], and computations show

that it has negligible effect on the final solution even for ks smaller than 1.

2.6 Evaluation of the Fields Impinging Upon the Top
and Bottom Trailing Edges

The scatterered far fields given by Eqs. (5), (7b), and (7c) require the total

magnetic field IT' exp(iks) illuminating the top and bottom trailing edges of the cube.

As a first approximation to H' one might use the value of the total field leaving the

top and bottom leading edges of the cube assuming that each of these leading edges is
part of an infinite right-angled wedge. Specifically, the solution to the right-angled

8
wedge reveals that this total grazing field behaves asymptotically (with large
distance ks from the edge) as

)A

H H 0 -0 Ho  (9)0 3 o

For a right-angled wedge, the expression of Eq. (91 for grazing field is reasonably

accurate even for ks on the order of unity. However, its useful accuracy for the

cube is limited to much larger values of ks. This is because the approximation in

Eq. (9) to H° becomes accurate for the cube only when the PO surface current on

the front face of the cube extends over a large enough area to produce the grazing

fields of the infinite front face of the right-angled wedge.

12



To get a more accurate approximation for H' than that of Eq. (9), we use an
integral formulation for the magnetic field in terms of surface current on the cube.

In particular, the total magnetic field [H ° exp(iks) I at a distance ks along the0x
center of the top or bottom surface (x = 0, y = ±s2, z = -s) of the cube for the

broadside plane-wave incidence of Figure 1 is expressed conveniently by the mag-

netic field equation as 3

H' elk s  2H e + " x f S (j')P (r',o) dS '
, (10)0 x 0 x 7T7

(jo = ±s/2 -S~z),y

where K is the surface current, P(r.',i) is the scalar Green's function

exp(ikl' - 7)/I' - 71, and S is the surface of the cube excluding the top or

bottom face on which ° is located. Because H refers to the magnetic field
0 0

impinging upon the top or bottom trailing edge of the cube, the current " includes

only the PO and fringe currents of the front face and leading edges. In other words,

Ho exp(iks) is the total magnetic field that would exist at the surface point 70 of the

cube, if the sides of the cube continued to infinity past the trailing edges.

The major contribution from the integral in Eq. (10) is from the PO current on

the front face of the cube. Denoting this integral by'T[P . that is,

- PO ez O os/2 o/( ' ~ x

P = -x f 0 s12 PO )dx' dy (y ay -s/2), (11)
-s -sf2 0 0 0

we find upon substitution of 1TP O from Eq. (1) into Eq. (11) that

-iks '/2 iksao(O)
2ks-2ks

-P = H e  [-1+ e f -o( do] . (12a)

The function a 0t() is defined as

I + sec (0/4) , 0= :_ :Stan- 1 2

a 0(0)o13

13 _0



The double integration of Eq. (11) reduces to the single integration of Eq. (12a)

after converting the x', y' integration variables to spherical coordinates

(R' sin 6 cos 9, R' sin 0 sin p) centered at the observation point F (so that the

area element equals R ' sin 6 dO do and R' equals s/cos 0). and performing the 0

integration. The remaining p integration of Eq. (12a) is done numerically in a short

subroutine of the computer program for evaluating the EHFD solution.
POIn addition to the PO current K . the fringe currents associated with the four

leading edges of the cube contribute to the integral in Eq. (10) for the field impinging

upon the top and bottom trailing edges. However, a rough estimate of the contribution

from the top or bottom front edge on the opposite back edge shows that it is small com -

pared with the integral in Eq. (12a), and thus can be neglected in the determination Ho .0.
To obtain the magnetic field impinging upon the top or bottom trailing edge

from the fringe current of its respective leading edge. we note that for an infinite

right-angled wedge a -* , the integral in Eq. (12a) becomes negligible, and the
0

H contribution of the PO current reduces to simply H . Thus the A/3 term in the
0 0

large ks expression in Eq. (9) for H' must be produced by the fringe current of the
0

respective leading edge. Labelling this contribution to the integral in Eq. (10) by

-, we have

y_ a ikseS . (13)

The contribution of Eq. (13) to the field impinging upon a trailing edge from the

leading-edge fringe current can also be obtained from the fringe diffraction coeffi-

cient g by realizing that the magnetic field radiated by the fringe current toward

the trailing edge is minus twice the magnetic field radiated in the opposite direction.

The final contribution to the current integral in Eq. (10) is from the fringe

currents along the front side edges at (x = ±s/2, z = 0). At first thought one might

argue that these side fringe currents contribute negligibly to the fields on the top

and bottom faces because they radiate like cylindrical waves over the side faces.

Indeed this is true for large ks. but for s < A/2 (ks < r) the fringe currents on these

side edges will also radiate over the top and bottom faces of the cube. We can

estimate the contribution of the front side fringe currents to the integral in Eq. (10)

by judiciously applying the Ufimtsev diffraction coefficient f. Because the field of

the fringe current of the corresponding right-angled wedge is analytic except in the

direction of the face of grazing incidence, the diffraction coefficient f is analytic

throughout the same region and will give the field produced by the fringe current a
inside the 90' wedge angle as well as outside. Use of this property of f allows the

integral in Eq. (10) of the fringe currents along the front side edges to be approxi-

mated by

14



TX 2 3 fF s A eiksH o~ . (14a)

where I, the E-wave diffraction coefficient in the direction of 0to equals approxi-

mately 1/2. The spreading factor F s is given approximately by

F ~ i~.)e r/4 (sin(ksI4) 21b
I ~ F k's -' s4 (14b)

and accounts for the finite length and angular displacement of the radiating edges.

The sin(ks/4)/(ks/4) part of the spreading factor occurs twice-once to account for

the field point F on the top or bottom face lying at an angle roughly equal to

0.5 radians off boresight of the radiating edges, and a second time to account for

the linear phase variation of the radiated field across the trailing edges. (The first.I s i e-i /4

portion of the spreading factor, that is, (I + -) e in Eq. (14b). is an

asymptotic result that holds for ks < 2; however, because T x has negligible effect

on the total solution for ks > 2, regardless of whether the exact or asymptotic form

of Eq. (14b) is used, the simpler asymptotic result in Eq. (14b) is retained for all

values of ks. )

In all, H is found by adding the individual current contributions of Eqs. (12).
0

(13), and (14) that comprise the integral in Eq. (10):

H' = H F' H 1 42 )2 e-iks e(5HOoF = H 0o 1t~ e +deft+ F s A V3 + . (15)

The factors A, a (0). and F are defined in Eqs. (7). (12b), and (14b), respectively.

Note that for large ks. the amplitude H 0 of the magnetic field impinging upon the

top and bottom trailing edges reduces to H0 , the asymptotic amplitude of Eq. (9) of

the grazing magnetic field propagating over the top of the corresponding right-angled

wedge. Using H 0 instead of H in our high frequency solution distinguishes the

EHFD solution from an ordinary HFD solution or the usual GTD solution, 11 and,

as the next section shows, extends the useful range of application of the high fre-

quency solution to frequencies in the resonance region.
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2.7 Numerical Results for the High Frequency Solutions 4

Now that the physical optics far field has been determined in Section 2. 2, the

singly diffracted far fields in Sections 2. 3 and 2. 4, the doubly diffracted far fields

in Section 2.5. and the grazing field H° illuminating the top and bottom trailing edges

in Section 2.6, the EHFD magnetic far field (cube) backscattered by the cube under 4sc

the broadside plane-wave incidence of Figure 1 can be written

ITcube = H ks [ Fs , e 2 ikssc =x 0 --iTU3- 0 2-

+ A0 eiks Fo 2iks , e3iks) eik (16)
+"3 "'T e + 3F e)(16)

The physical optics, singly diffracted, and doubly diffracted fields are given re-

spectively by the first second, and third term within the brackets of Eq. (16). The

"double-diffraction factor" A is defined under Eqs. (7), and the "enhancement

factor" Fo is defined by Eq. (15).

The radar cross section C, which is related to . cube by the simple expressionsc

41rz
2 i-ffcubei2

sc (17)

is computed using the EHFD solution of Eq. (16) and plotted in Figure 2 as a func-

tion of the perimeter (4s/?) of the cube. Comparison of Figure 2 with the method

of moments (MOM) solution for the magnetic field integral equations of Section 3

(Figure 7) shows that the two RCS curves agree closely for 1. 5 < 4s/ < 6, and

even reasonably well in the resonance region (4s/A < 1. 5) where a high frequency

diffraction solution is not expected to yield valid results.

Figure 3 reveals that this unexpected agreement in the resonance region occurs

because H' is used instead of H for the fields impinging upon the top and bottom
O 0

trailing edges. The curve in Figure 3 is the RCS computed from the less accurate

high frequency approximation of using H for the grazing field at the trailing edges.

The variations of this conventional HFD solution in Figure 3 are less pronounced

then the EHFD solution, the resonance is hardly discernable. and the distinction

between the conventional HFD solution and the PO solution shown by the curve in

Figure 4 is considerably less than between the EHFD and PO solution.

16
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Figure 5 plots only the PO plus single-diffraction terms of the EHFD solution

[Eq. (16)) in order to show the importance of the contribution of the doubly diffracted

rays. Expressions for the far fields of the triply diffracted rays were also deter-

mined, but are not shown because they had no perceptible effect on either the EHFD

curve of Figure 2 or the conventional solution curve of Figure 3. This negligible

effect of the triply diffracted rays on broadside RCS supports the conclusion that the

conventional high frequency solution is limited by the use of H°0 for the fields

grazing upon the trailing edges and not by the neglect of multiply diffracted rays of

order higher than two.

3. THE MAGNETIC-FIELD INTEGRAL EQUATION SOLUTION

The MFIE has been solved numerically for the broadside RCS of the cube by

Tsai, Dudley, and Wilton, 1and more recently by Wang and Drane, 12up to a cube

sidelength of about 0. 7A. Unfortunately, the MFIE (and, incidentally. the electric-

field integral equation EFIE) suffers from spurious homogeneous solutions at the

12. Wang, J. J. H.. and Drane, C. J. (1982) Numerical analysis of arbitrarily
shaped bodies modeled by surface patches. IEEE Trans. Microwave
Theor and Tech., -(8):1167-1173.
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frequencies of the corresponding interior cavity. 3, 13, 14 The first interior resonant

frequency of the cube occurs at s/X = 0. 7. and subsequent resonant frequencies are

spaced at increasingly narrower frequency intervals. Consequently, for s/A greater

than about 0. 5, numerical solutions to the MFIE rapidly deteriorate. Figure 6 re-

veals the severity of the spurious resonance problem by plotting the numerical

MFIE solution for RCS out to a cube side length of about 4. The numerical scheme

that was used is identical to that of Reference 1 with 384 patches over the cube. The

jagged peaks and valleys in the RCS curve of Figure 6, are caused by the spurious

solutions of the MFIE at the interior resonant frequencies.

13. Alurray, F. H. (1931) Conductors in an electromagnetic field, (E ept, H ePt),

Am. J. Math., 53(2):275-288. S

14. Maue, A.W. (1949) On the formulation of a general scattering problem by
means of an integral equation, Z. Phys., 126(7):601-618.
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A number of methods have been devised to eliminate the spurious resonances
for the MFIE (and EFIE) solution (see Reference 3 for a survey of the various S

methods). A particularly simple technique 3 for eliminating the spurious solution
"augments" the original magnetic-field integral equation with the condition that the

normal H-field be zero at the surface of the perfectly conducting scatterer. This

augmentation eliminates the spurious resonances without sacrificing the basic

simplicity, solution capability, or pure magnetic-field character of the original S

MFIE. Specifically, the augmented magnetic-field integral equation (AMFIE) takes

the form

=T M ~x (F) + ~ K ~xV ipdS .(18)
S 0

where r (r) is the surface current at an observation point 7 on the surface s of the

cube, 1i7r is the incident magnetic field at that observation point, and ip is the usual

scalar Green's function defined after Eq. (10). The original MFIE is reclaimed

from the AMFIE merely by crossing the normal a to the surface at "F into both sides

of Eq. (18). Like the original MFIE, the integral in Eq. (18) is evaluated in a 0
3

surface principal value sense.

A desirable feature of the AMFIE [Eq. (18)] is its solvability by the same simple

numerical "method of moments" scheme applied to the original MFIE. In particular,

20
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when we apply the numerical scher.me that Tsai, Dudley, and Wilton used, that is,

the same numerical scheme that we applied to the MFIE to obtain Figure 6, the 4

RCS curve shown in Figure 7 results. (Actually, the MFIE is used for 4 s/X < 1.5
and the AMFIE for 4 s/A > 1.5 because the MFIE yields slightly greater accuracy

at the very low frequencies. ) One can see from Figure 7 that the spurious

resonances of Figure 6 are removed. However, the solution beyond 4 s/X = 6 is

not shown because numerical experimentation with patch size showed that accept- S

able accuracy could be assured only up to 4 s/A = 6 when limited to a patch size

corresponding to 384 patches over the cube. Smaller patch sizes were not possible

with the present computer program, because, even using the symmetry of the cube

to reduce computer time and storage, the central memory of the available

Cyber 750 was not large enough to handle more patches. Also, more than two hours of

computer time was required to obtain the curve of Figure 7. (Such large computer

time and storage requirements are the major reasons for the surface integral

equations having seen little application to general three-dimensional bodies greater

than a couple of wavelengths across.
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4. THE COMPOSITE SOLUTION

The chief advantage of the numerical integral equation solution is its high

accuracy at low frequencies from the Rayleigh region through the resonance region.

Its chief disadvantage is the prohibitive amount of computer time and storage that
limits its reliable accuracy only to the low frequency range plotted in Figure 7.

Conversely, the chief advantage of conventional high frequency diffraction

solutions is their simplicity of expression and the inconsequential amount of com-

puter time and storage they require to compute RCS at an arbitrarily high frequency.

Their major disadvantage is their restriction to frequencies well above resonance
for useful engineering accuracy. Consequently, for three-dimensional scatterers

there usually exists an intermediate frequency range between resonance and sub-
stantially higher frequencies in which neither the integral equation solution nor the

high frequency diffraction solution yields accurate results. Moreover, such an
intermediate frequency range in which neither solution is accurate prevents reliable

comparison between the integral equation and high frequency solutions.
Fortunately, we have been able to enhance the conventional high frequency solu-

tion for the cube in order to reduce the limits of accuracy to a fraction of a decibel
at frequencies bordering on the dominant resonance. In addition, use of the aug-

mented magnetic field integral equation has extended the accurate range of our

integral equation solution to frequencies further above resonance than previous inte-
gral equation solutions for broadside RCS of the conducting cube. In short, the EHFD
solution of Figure 2 and the AMFIE solution of Figure 7 compare very closely over

the intermediate frequency range from 4 s/ = 1. 6 to 6, and thus can be combined to

form a composite solution that holds for all frequencies. Figure 8 plots this compo-

site solution out to 4 s/X equal to 15 and compares this theoretical curve with
measured RCS data taken at 11 X-band frequencies on 18 solid aluminum cubes vary-15
ing in side length from 5 to 100 millimeters. The composite curve in Figure 8

uses the AMFIE solution of Figure 7 for 4 s/A < 5. 1 and the E-FD solution of
Figure 2 for 4 s/ > 5. 1. The predicted and measured values of RCS compare to
within the two-sigma experimental limits of accuracy of about * 1 dB.

Finally, for the sake of comparison with a familiar canonical solution, Figure 9
shows the RCS of a perfectly conducting sphere of radius "a" computed from the

exact spherical eigenfunction solution (for example, see Reference 8, Chapter 9)
and plotted to the same scale as Figure 8. The first resonance of the sphere occurs

at nearly the same perimeter and has nearly the same magnitude as that of the cube.
but for frequencies beyond the first resonance the strong specular reflection from the
front face of the cube raises its RCS well above the RCS of the sphere.

15. McGahan, R.V. (1983) Scattering Experiments at the Ipswich Electromagnetic
Measurements Facility: Backscatter From Metal Cubes. RADC In-House
Report to be published.
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5. SUMMARY AND CONCLUSIONS

The sparsity of accurate (= * 1 dB) broadband solutions to general, three-
dimensional scatterers with edges and corners motivated our looking into the prob-
lem of broadside backscatterng from the perfectly conducting cube. Existing mag-
netic-field integral equation (MFIE) solutions for the cube encounter spurious
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resonances that cause serious inaccuracies for cube side lengths greater than about

0. 5 A. Existing GTD solutions for the cube yield an accurate broadside RCS only

at considerably higher frequencies where the GTD solution practically coincides

with the physical optics integration from the front face of the cube. Thus, not only

is there an intermediate range of frequencies in which no accurate solution exists,

but there is also no common range of frequencies that can be used to compare reli-

ably the low frequency integral equation solutions and the high frequency diffraction

solutions.

The present approach has been first to develop an enhanced high frequency dif-

fraction (EHFD) solution that determines the RCS of the cube with considerable accu-

racy down to frequencies in the resonance region; and secondly, to use an augmented

magnetic-field integral equation (AMFIE) to eliminate the spurious resonances and

extend the range of validity of the original MFIE up to frequencies well above resonance,

that is, to as high a frequency as available computer time and storage permits. This

twofold approach of using the AMFIE and EHFD solutions enabled us to make a

mutually confirming comparison of RCS computed by two very different techniques

,)ver an intermediate range of frequencies. Moreover, it produced an accurate compo-

site expression for the broadside RCS of the cube at any frequency that compared to

within ± I dB with measured data taken for the cube side length ranging from 0. 15

to 4 wavelengths.

The general development and numerical verification of the augmented integral
3

equations were presented in previous publications. However the technique used

to enhance the conventional high frequency diffraction solution is apparently new,

although quite simple in essence and straightforward in application. Instead of using

the conventional GTD approximation for the grazing fields impinging upon the trailing

edges of the cube, we computed the scattered part of the impinging fields by inte-

grating over the physical optics and fringe currents of the front face and edges of

the cube. In other words, the currents induced on the leading face and edges of the

cube were used to better estimate the fields impinging upon the trailing edges. This

refinement increased considerably the accuracy of the solution for cube side Lengths

less than one wavelength, and produced a high frequency diffraction curve that agreed

closely with the integral equation solution at intermediate frequencies. Unlike the

conventional high frequency solutions, the EHFD solution clearly revealed the

dominant resonance of the cube that peaks at a cube side length of approximately

0. 25 wavelengths.

Finally, this enhancement technique can also be applied to perfectly conducting

scatterers other than the cube, provided a definite separation exists between leading

and trailing ends of the scatterer along the direction of propagation of the incident

field. Whether the technique is feasible for more general geometries and aspect

angles remains to be determined.
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